Thursday, 7 February 2013

ITBAL:Session 5(05.02.2013)


Asgn1: To find and plot returns for NSE data of more than     months.

> z<-read.csv(file.choose(),header=T)
> head(z)
         Date    Open    High     Low   Close Shares.Traded Turnover..Rs..Cr.
1 02-Jul-2012 5283.85 5302.15 5263.35 5278.60     126161441           4991.57
2 03-Jul-2012 5298.85 5317.00 5265.95 5287.95     133117055           5161.82
3 04-Jul-2012 5310.40 5317.65 5273.30 5302.55     155995887           5750.10
4 05-Jul-2012 5297.05 5333.65 5288.85 5327.30     118915392           4709.79
5 06-Jul-2012 5324.70 5327.20 5287.75 5316.95     113300726           4760.51
6 09-Jul-2012 5283.70 5300.60 5257.75 5275.15     101169926           4189.25
> open<-z$Open[10:95]
> open.ts<-ts(open,deltat=1/252)
> open.ts
Time Series:
Start = c(1, 1)
End = c(1, 86)
Frequency = 252
 [1] 5242.75 5232.35 5228.05 5199.10 5249.85 5233.55 5163.25 5128.80 5118.40
[10] 5126.30 5124.30 5129.75 5214.85 5220.70 5233.10 5195.60 5260.85 5295.40
[19] 5345.25 5348.30 5308.20 5316.35 5343.25 5385.95 5368.60 5368.70 5395.75
[28] 5426.15 5392.60 5387.85 5348.05 5343.85 5268.60 5298.20 5276.50 5249.15
[37] 5243.90 5217.65 5309.45 5343.65 5361.90 5336.10 5404.45 5435.20 5528.35
[46] 5631.75 5602.40 5536.95 5577.00 5691.95 5674.90 5653.40 5673.75 5684.80
[55] 5704.75 5727.70 5751.55 5815.00 5751.85 5708.15 5671.15 5663.50 5681.70
[64] 5674.25 5705.60 5681.10 5675.30 5703.30 5667.60 5715.65 5688.80 5683.55
[73] 5665.20 5656.35 5596.75 5609.85 5696.35 5693.05 5694.10 5718.60 5709.00
[82] 5731.10 5688.45 5689.70 5650.35 5624.80
> summary(open.ts)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.
   5118    5281    5431    5474    5682    5815
> z.diff<-diff(open.ts)
> z.diff
Time Series:
Start = c(1, 2)
End = c(1, 86)
Frequency = 252
 [1] -10.40  -4.30 -28.95  50.75 -16.30 -70.30 -34.45 -10.40   7.90  -2.00
[11]   5.45  85.10   5.85  12.40 -37.50  65.25  34.55  49.85   3.05 -40.10
[21]   8.15  26.90  42.70 -17.35   0.10  27.05  30.40 -33.55  -4.75 -39.80
[31]  -4.20 -75.25  29.60 -21.70 -27.35  -5.25 -26.25  91.80  34.20  18.25
[41] -25.80  68.35  30.75  93.15 103.40 -29.35 -65.45  40.05 114.95 -17.05
[51] -21.50  20.35  11.05  19.95  22.95  23.85  63.45 -63.15 -43.70 -37.00
[61]  -7.65  18.20  -7.45  31.35 -24.50  -5.80  28.00 -35.70  48.05 -26.85
[71]  -5.25 -18.35  -8.85 -59.60  13.10  86.50  -3.30   1.05  24.50  -9.60
[81]  22.10 -42.65   1.25 -39.35 -25.55
> returns<-cbind(open.ts,z.diff,lag(open.ts,k=-1))
> returns
Time Series:
Start = c(1, 1)
End = c(1, 87)
Frequency = 252
         open.ts z.diff lag(open.ts, k = -1)
1.000000 5242.75     NA                   NA
1.003968 5232.35 -10.40              5242.75
1.007937 5228.05  -4.30              5232.35
1.011905 5199.10 -28.95              5228.05
1.015873 5249.85  50.75              5199.10
1.019841 5233.55 -16.30              5249.85
1.023810 5163.25 -70.30              5233.55
1.027778 5128.80 -34.45              5163.25
1.031746 5118.40 -10.40              5128.80
1.035714 5126.30   7.90              5118.40
1.039683 5124.30  -2.00              5126.30
1.043651 5129.75   5.45              5124.30
1.047619 5214.85  85.10              5129.75
1.051587 5220.70   5.85              5214.85
1.055556 5233.10  12.40              5220.70
1.059524 5195.60 -37.50              5233.10
1.063492 5260.85  65.25              5195.60
1.067460 5295.40  34.55              5260.85
1.071429 5345.25  49.85              5295.40
1.075397 5348.30   3.05              5345.25
1.079365 5308.20 -40.10              5348.30
1.083333 5316.35   8.15              5308.20
1.087302 5343.25  26.90              5316.35
1.091270 5385.95  42.70              5343.25
1.095238 5368.60 -17.35              5385.95
1.099206 5368.70   0.10              5368.60
1.103175 5395.75  27.05              5368.70
1.107143 5426.15  30.40              5395.75
1.111111 5392.60 -33.55              5426.15
1.115079 5387.85  -4.75              5392.60
1.119048 5348.05 -39.80              5387.85
1.123016 5343.85  -4.20              5348.05
1.126984 5268.60 -75.25              5343.85
1.130952 5298.20  29.60              5268.60
1.134921 5276.50 -21.70              5298.20
1.138889 5249.15 -27.35              5276.50
1.142857 5243.90  -5.25              5249.15
1.146825 5217.65 -26.25              5243.90
1.150794 5309.45  91.80              5217.65
1.154762 5343.65  34.20              5309.45
1.158730 5361.90  18.25              5343.65
1.162698 5336.10 -25.80              5361.90
1.166667 5404.45  68.35              5336.10
1.170635 5435.20  30.75              5404.45
1.174603 5528.35  93.15              5435.20
1.178571 5631.75 103.40              5528.35
1.182540 5602.40 -29.35              5631.75
1.186508 5536.95 -65.45              5602.40
1.190476 5577.00  40.05              5536.95
1.194444 5691.95 114.95              5577.00
1.198413 5674.90 -17.05              5691.95
1.202381 5653.40 -21.50              5674.90
1.206349 5673.75  20.35              5653.40
1.210317 5684.80  11.05              5673.75
1.214286 5704.75  19.95              5684.80
1.218254 5727.70  22.95              5704.75
1.222222 5751.55  23.85              5727.70
1.226190 5815.00  63.45              5751.55
1.230159 5751.85 -63.15              5815.00
1.234127 5708.15 -43.70              5751.85
1.238095 5671.15 -37.00              5708.15
1.242063 5663.50  -7.65              5671.15
1.246032 5681.70  18.20              5663.50
1.250000 5674.25  -7.45              5681.70
1.253968 5705.60  31.35              5674.25
1.257937 5681.10 -24.50              5705.60
1.261905 5675.30  -5.80              5681.10
1.265873 5703.30  28.00              5675.30
1.269841 5667.60 -35.70              5703.30
1.273810 5715.65  48.05              5667.60
1.277778 5688.80 -26.85              5715.65
1.281746 5683.55  -5.25              5688.80
1.285714 5665.20 -18.35              5683.55
1.289683 5656.35  -8.85              5665.20
1.293651 5596.75 -59.60              5656.35
1.297619 5609.85  13.10              5596.75
1.301587 5696.35  86.50              5609.85
1.305556 5693.05  -3.30              5696.35
1.309524 5694.10   1.05              5693.05
1.313492 5718.60  24.50              5694.10
1.317460 5709.00  -9.60              5718.60
1.321429 5731.10  22.10              5709.00
1.325397 5688.45 -42.65              5731.10
1.329365 5689.70   1.25              5688.45
1.333333 5650.35 -39.35              5689.70
1.337302 5624.80 -25.55              5650.35
1.341270      NA     NA              5624.80
> returns<-z.diff/lag(open.ts,k=-1)
> returns
Time Series:
Start = c(1, 2)
End = c(1, 86)
Frequency = 252
 [1] -1.983692e-03 -8.218105e-04 -5.537437e-03  9.761305e-03 -3.104851e-03
 [6] -1.343256e-02 -6.672154e-03 -2.027765e-03  1.543451e-03 -3.901449e-04
[11]  1.063560e-03  1.658950e-02  1.121796e-03  2.375160e-03 -7.165925e-03
[16]  1.255870e-02  6.567380e-03  9.413831e-03  5.706001e-04 -7.497710e-03
[21]  1.535360e-03  5.059862e-03  7.991391e-03 -3.221344e-03  1.862683e-05
[26]  5.038464e-03  5.634064e-03 -6.183021e-03 -8.808367e-04 -7.386991e-03
[31] -7.853330e-04 -1.408161e-02  5.618191e-03 -4.095731e-03 -5.183360e-03
[36] -1.000162e-03 -5.005816e-03  1.759413e-02  6.441345e-03  3.415269e-03
[41] -4.811727e-03  1.280898e-02  5.689756e-03  1.713828e-02  1.870359e-02
[46] -5.211524e-03 -1.168249e-02  7.233224e-03  2.061144e-02 -2.995458e-03
[51] -3.788613e-03  3.599604e-03  1.947566e-03  3.509358e-03  4.022963e-03
[56]  4.163975e-03  1.103181e-02 -1.085985e-02 -7.597556e-03 -6.481960e-03
[61] -1.348933e-03  3.213561e-03 -1.311227e-03  5.524959e-03 -4.294027e-03
[66] -1.020929e-03  4.933660e-03 -6.259534e-03  8.478015e-03 -4.697628e-03
[71] -9.228660e-04 -3.228616e-03 -1.562169e-03 -1.053683e-02  2.340644e-03
[76]  1.541931e-02 -5.793183e-04  1.844354e-04  4.302699e-03 -1.678733e-03
[81]  3.871081e-03 -7.441852e-03  2.197435e-04 -6.916006e-03 -4.521844e-03
> plot(returns)

Asgn 2: Do logit analysis for 700 data points and then predict for 150 data points.

z<-read.csv(file.choose(),header=T)

head(z)

z.data<-z[1:700,1:9]

sapply(z.data,mean)

z.data$ed<-factor(z.data$ed)

logit.est<-glm(default~age+employ+address+income+debtinc+creddebt+othdebt,data=z.data,family="binomial")

summary(logit.est)

confint.default(logit.est)

logit.eg2<-with(z[701:850,1:8],data.frame(age=age,employ=employ,address=address,income=income,debtinc=debtinc,creddebt=creddebt,othdebt=othdebt,ed=factor(1:3)))

logit.eg2$prob<-predict(logit.est,newdata=logit.eg2,type="response")

head(logit.eg2)





No comments:

Post a Comment